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SUPERSONIC INVESTIGATION OF A SPINNING AND NONSPINNING 

MODEL OF A CAJUN (OR APACHE) ROCK32 VEBICLE 

W I T H  ROGCONTROL TABS 

By Ralph A. Falanga 
Langley Research Center 

SUMMARY 

A model of the Cajun rocket with nose cone and standard f i n  assembly 
(scaled t o  0.401) was tes ted i n  the  Langley Unitary Plan wind tunnel from Mach 
numbers of 2.30 t o  4.63 a t  a Reynolds number of 2.5 x 106 per foot. 
t i ona l  data are  presented f o r  Reynolds number of 4.0 x 106 per foot and f o r  model 
incidence angles other than zero. Measured wind-tunnel resu l t s  on 11 rol l -  
control-tab configurations (plates  with wedge-shaped cross section) f o r  mounting 
on the t r a i l i n g  edge of the s tab i l iz ing  f i n s  of Cajun stage t o  obtain ro l l -  
effectiveness data a re  presented herein along with the  general aerodynamic char- 
ac t e r i s t i c s  defining t h i s  vehicle. 
moment coefficient and the damping-in-roll derivative compared favorably with 
theoret ical  resul ts .  

Some addi- 

The data obtained f o r  t h e  t o t a l  rolling- 

INTRODUCTION 

The Nike-Ca jun ( C A N ) ,  a two-stage solid-propellant rocket vehicle, jo in t ly  
developed by NASA and University of Michigan w a s  i n i t i a l l y  proposed as a mete- 
orological sounding rocket system. For example, CAN systems have been success- 
f u l l y  used i n  f ree-f l ight  investigations t o  measure atmospherfc densit ies,  winds 
a lof t ,  and even used t o  photograph hurricanes. These missions were successful 
as long as CAN, with i t s  i n i t i a l l y  designed hardware (now considered standard) 
and with a reasonable amount of s t a t i c  margin, flew zero- l i f t  and nonspinning 
t ra jec tor ies .  Any required vehicle maneuver which induced loadings beyond the 
scope outlined, however, would warrant careful analysis of vehicle dynamics 
before the  system i s  considered flight-worthy. Recently, some standard CAN 
systems have been spun-up i n  f l i g h t  e i ther  t o  sa t i s fy  payload requirements o r  
f o r  range safety reasons and the  outcome f o r  some f l i g h t s  resulted i n  vehicle 
motions which were unexpectedly large.  
and coned through large angles; others had t h e i r  f l i g h t s  termhated abruptly 
because of s t ruc tura l  fa i lure .  Moreover, i n  most f l i g h t s  the  spin veloci t ies  
were not i n  agreement with pref l ight  calculations. 
estimates of the vehicle aerodynamic coefficients were not adequate f o r  more 
favorable correlation with f l i g h t  results o r  else, because of aeroelast ic  

For example, some systems went unstable, 

Apparently then, e i ther  the  



effects ,  t he  s t ruc tu ra l  i n t eg r i ty  of the system w a s  being exceeded t o  cause 
these unpredicted results. 

Since a frequent maneuver request on t h e  Cajun o r  Apache rocket stage ( the 
Apache rocket, incidentally, i s  geometrically ident ica l  t o  the  Cajun rocket and 
d i f f e r s  only i n  motor t o t a l  impulse) has been t o  spin-up t h e  vehicle f o r  payload 
requirements and a l so  t o  maintain a prescribed ro l l ing  history,  possibly close 
t o  the  pi tch o r  yaw natural  frequency of t he  system, it appears necessary f o r  
assurance of successful mission measurements that more precise aerodynamic char- 
a c t e r i s t i c s  both during spinning and nonspinning maneuvers on t h e  Cajun o r  
Apache stage be available. 

The purpose of th i s  investigation w a s  t o  supplement existing aerodynamic 
data on the  C a j u n  o r  Apache stage of t h e  CAN system by undertaking a wind-tunnel 
investigation on t h i s  stage. Measured wind-tunnel results on 11 roll-control- 
t ab  (wedge-shaped cross-section) configurations f o r  mounting on the  t r a i l i n g  
edge of t he  s tab i l iz ing  f i n s  t o  obtain roll-effectiveness data a re  presented 
herein along with the  general aerodynamic character is t ics  of t h i s  stage. 
type of roll-control hardware is  presently being used on f l i g h t  systems. 

This 

A model of t he  Cajun (scaled t o  0.401) with nose cone and standard f i n  
assembly w a s  t es ted  i n  the  Langley Unitary Plan wind tunnel from Mach numbers 
of 2.30 t o  4.63 a t  a Reynolds number of 2.5 x 106 per foot .  Some additional 
data  were obtained a t  Reynolds number of 4.0 x 106 per foot and are a lso  pre- 
sented herein. The investigation w a s  divided in to  two phases; one phase w a s  
devoted en t i re ly  t o  obtaining measurements on the  system under a free-spinning 
condition and the  other phase, a nonrolling condition, t o  obtain measured forces 
and moments induced on t h e  model by the  various f i n  tab  configurations. 

SYMBOLS 

The force and moment coeff ic ients  a re  referred t o  t he  bcdy-axis system. 
A l l  aerodynamic moments a re  taken about the  balance pi tch center which w a s  
located at s ta t ion  9 .84.  

C 

Symbols used i n  this paper are defined as follows: 

chord of roll-control t ab  (see f i g .  2(a))  

CA 
Axial force 

axial-force coefficient excluding base drag, 9 cD,oO 
%S 

t o t a l  drag coefficient including base drag PD, t> -00 

‘D,b base drag coefficient 

Cm 

Rolling moment 
rolling-moment coefficient,  

%om 
Pitching moment pitching-moment coefficient, 
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s t a t i c  s t a b i l i t y  derivative per degree, (C%)mOO 

CN normal-force coefficient, Normal force 
ss 

slope of normal-force curve per degree - ( C N a )  -00 

roll-effectiveness parameter, radians 

d model cylindrical  diameter, 0.222 f t  

h height of f i n  roll-control-tab wedge, in .  (see f i g .  2 (a) )  

% free-stream Mach number 

P rol l ing velocity, raiiians/sec 

s, 

%, 

free-stream dynamic pressure, lb/sq f t  

free-stream Reynolds number per foot 

S cross-sectional area of model cylindrical  section, 0.0388 sq f t  

vcu free-stream velocity, f t / s ec  

X distance measured aft  from s ta t ion  0 along model center l ine,  f t  

U incidence angle of model center l ine,  deg 

6 

Subscripts : 

CP center of pressure 

cg center of gravity 

f i n  roll-control-tab wedge half-angle, deg (see f ig .  2( a) )  

Dots over symbols indicate derivatives with respect t o  t i m e .  
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APPARATUS AND ME;THODS 

T e s t  Fac i l i ty  

The t e s t s  were conducted i n  the Langley Unitary Plan wind tunnel at  Mach 
numbers of 2.30 t o  4.63 and at  free-stream Reynolds numbers of 2.5 x 106 and 
4.0 x 106 per foot.  This f a c i l i t y  i s  a variable-pressure, continuous, return 
flow tunnel with two t e s t  sections 4 f ee t  square and approximately 7 f ee t  i n  
length. An asymmetric sliding-block nozzle provides a means t o  vary the Mach 
number continuously from 1.4 t o  2.9 i n  the  low Mach number t e s t  section and from 
2.3 t o  4.7 i n  the  high Mach number test section. The high Mach number t e s t  sec- 
t i o n  was used exclusively f o r  these t e s t s .  
t h i s  tunnel f a c i l i t y .  

See reference 1 f o r  more de ta i l s  on 

Models 

Photographs of t he  basic model used i n  t h i s  investigation a re  shown i n  f ig-  
This model i s  a 0.401-scaled version of the Cajun stage of CAN system ure 1. 

presently being u t i l i zed  extensively i n  f ree-f l ight  studies.  
model with d e t a i l  dimensions i s  shown i n  f igure 2. 
t o  a s e t )  of fin-trailing-edge roll-control tabs have been investigated with the 
basic model. 
sions necessary t o  define these roll-control tabs.  
structed from 2024-T4 aluminum, and a portion of the midsection of the main 
cylinder (namely, from stat ions 28.50 t o  40.75), the fins,  and the roll-control 
tabs  were constructed from 4160 s ta inless  s t ee l .  
ful l -scale  Cajun have also been incorporated in to  the  basic model i n  order tha t  
the external-flow-field character is t ics  be similar. 
i l l u s t r a t e  with sketches the in te rna l  arrangements of components used i n  the 
free-spinning and nonspinning phases of the  wind-tunnel program. 
f igure 2 i l l u s t r a t e s  the arrangement of the  bearings and spindle necessary t o  
allow the model t o  spin f ree ly  i n  order t o  measure the r o l l  effectiveness of the 
f i n  roll-control tabs investigated. Sketch ( c )  i l l u s t r a t e s  the arrangement of 
the six-component strain-gage balance used t o  measure the developed forces and 
moments from the  f i n  control tabs during the  nonrolling phase. The model w a s  
mass-balanced dynamically f o r  the free-spinning phase of the  program. Eleven 
different  sets of roll-control tabs  were tes ted on the basic model and instead 
of designating each new se t  used with the model as a new configuration, the base 
chord 
wedge half-angle 8 
plus tabs presented herein. 
of the control tab are considered primary and completely defined the  tabs.  
f i g .  2 f o r  specif ic  numbers.) 

A drawing of t h i s  
Eleven different  s e t s  (four 

Figure 2(a)  gives the important geometric parameters and dimen- 
The basic model w a s  con- 

A l l  external fa i r ings  on the 

Figures 2(b) and 2( c )  

Sketch (b )  of 

c of the  roll-control tab (which has a wedge cross section) and the 
are used t o  identify the  measured data f o r  the basic model 

These geometric parameters, chord and wedge angle, 
(See 

Test Conditions and Procedure 

The tests were performed at Mach n bers of 2.30, 2.96, 3.95, and 4.63, and 
free-stream Reynolds number of 2.5 x 10 ? per foot.  Some of the tests l i s t e d  
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have been repeated f o r  an increase of 60 percent i n  free-stream Reynolds num- 
ber or 4.0 x 106 per foot i n  order t o  establish some leve l  of dominance of t h i s  
parameter f o r  the resu l t s  obtained. 
some data have been obtained a t  incidence angles of +2O, ?4O, and +6O. 
data, however, are  not presented herein i n  t h e i r  complete raw form; instead, 
limited data a re  used t o  establish some typical  trends with the  other measured 
resu l t s  and ind i rec t ly  t o  establish ra tes  of change with respect t o  these angles 
of incidence, f o r  example, ma and Cma. The data reduction w i l l  be discussed 
i n  more d e t a i l  i n  t he  following section. 

Besides the  data obtained a t  zero incidence, 
These 

The program conducted i n  the  Langley Unitary Plan wind tunnel consisted of 
two phases: phase 1, the  model w a s  allowed t o  spin f ree ly  t o  an equilibrium, 
steady-state rol l ing velocity which w a s  measured with a stroboscope; phase 2, 
t he  model had been equipped with six-component strain-gage balance, mounted 
internal ly  t o  measure forces and moments f o r  the nonrolling condition. Base- 
pressure measurements were a l so  made i n  phase 2. For phase 1, 16-minimeter 
movies were taken i n  order t o  record any abnormal or  unpredicted events during 
f r ee  spinning of the  model as well as t o  represent backup data f o r  measuring 
steady-state spinning veloci t ies .  Some exploratory schlieren photographs of 
the  flow f i e l d  about the a f t  section of the model were taken during phase 2. 
Because of the  limited view of the f l o w  f i e l d  obtained f o r  a l l  Mach numbers 
investigated, a qual i ta t ive analysis could not be justif ied; therefore, these 
photographs a re  not presented herein. 

Data Reduction and Method of Analysis 

A l l  force and moment data have been reduced t o  coefficient form and refer- 
enced t o  the basic body diameter (0.222 foot )  and t o  the cross-sectional area 
of the referenced diameter. Also, force and moment coefficients are referred 
t o  the body-axis system. The pi tch moment center of the  balance w a s  located a t  
s ta t ion  38.84. (The center-of-gravity posit ion occurs a t  57 percent of the  
body length and duplicates the  center-of-gravity position of a recent free- 
f l i g h t  t e s t  of the  Cajun stage of a CAN system.) 

The static-margin data presented herein, i n  tenus of reference diameter, 
have been obtained by expressing as a ratio,  at  zero incidence, the  s t a t i c  s ta-  
b i l i t y  derivative ( C%)-oo t o  the normal-force slope (Qa)a;,oo; namely, 

xcp - xcg - - - . The rolling-velocity data obtained from phase 1 have 
d 'Nu -00 

been reduced t o  a roll-effectiveness parameter -* , t h i s  parameter i s  i n  a con- 
2vcn 

venient form from the  standpoint t ha t  it appears i n  the  rolling-moment equation 
The damping- in- r o l l  used t o  evaluate the model damping-in-roll parameter 

derivative w a s  reduced from the  measured data by dividing the t o t a l  roll ing- 

moment coefficient C2 by the  roll-effectiveness parameter -. 
2P' 

C 

pa 
;rv, 
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The base drag coefficients were obtained from pressure measurements made 
i n  the  base cavity as w e l l  as i n  the  base annulus of t h e  model. The base drag 
of t he  cavity region and tha t  of the  base annulus were computed separately and 
then summed t o  represent the  t o t a l  base drag coefficient presented herein. 

Accuracy 

The force and moment coefficient data obtained from the  six-component 
strain-gage balance have been corrected f o r  flow angularities and f o r  balance 
and s t ing deflections under load. With t h e  f i n  roll-control tabs removed and 
the  model at zero incidence, no residual r o l l  w a s  observed f o r  the  range of t e s t  
variables studied. 

The accuracy of t he  individual measured quantities, based on calibrations 
and repeatabil i ty of data f o r  these t e s t s  i s  estimated t o  be within the fol-  
lowing limits: 

C N . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  f O . l O O  
E c A  . . . . . f0.020 (‘D)&o 

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 . 0 5 0  
CZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -+0.010 

rybo.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.015 a, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kO.100 

For phase 1 with model f r ee  spinning, t he  in te rna l  f r i c t i o n  contributed by 
the bearings t o  the  measured data w a s  found t o  be 1 percent or  less of the  meas- 
ured spin rate fo r  a l l  conditions studied, except f o r  the  tab, 6 = 16O and 
c = 0.615 inch, a t  M = 4.63 where the e r ror  amounted t o  4 percent of the meas- 
ured value of spin velocity. The in te rna l  f r i c t i o n  f o r  t he  system w a s  deter- 
mined from laboratory calibration and a d e t a i l  description of t h i s  calibration 
i s  given i n  the  appendix. The stroboscope used t o  measure steady-state rol l ing 
velocity had a range of 110 t o  25,000 flashes per minute and the frequency d i a l  
w a s  calibrated t o  1 percent of a l l  scales. 

The damping-in-roll derivatives Czp  reduced from data f o r  the  measured 

t o t a l  rolling-moment coefficient and roll-effectiveness parameter were 

estimated t o  be accurate within the  following limits: at  b& = 2.30, Czp has 

an accuracy of +2.?/radian and a t  & = 4.63, 
ElO.O/radian. 

*v, 

has an accuracy of 
czP 

(This accuracy number also includes bearing contributions. ) 

Aeroelastic e f fec ts  from the  f i n s  at  m a x i m u m  tunnel dynamic pressure were 
measured i n  the  laboratory by superimposing s t a t i c  loads calculated f o r  loads 
induced by spinning and those due t o  the  roll-control tab.  The resulting meas- 
ured deflections were negligible and no corrections were necessary t o  the wind- 
tunnel data. 
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RESULTS AND DISCUSSION 

Roll-Effectiveness Parameters 

The roll-effectiveness parameters were measured under steady-state condi- 
t i ons  and, as i l l u s t r a t e d  i n  figures 3 t o  7, are f o r  zero- l i f t  conditions. 
Furthermore, t he  e f f ec t  of angle of a t tack is  small as i l l u s t r a t e d  by the  ty-pi- 

c a l  p lo t  of t h i s  e f fec t  i n  f igure  7. Another small effect  on w a s  t he  
2vm I 

slight increase i n  t h i s  

apparently r e su l t s  from the  f a c t  t h a t  t he  boundary-layer thickness on a f la t  
p l a t e  decreases as Reynolds number t o  t h e  -l/5th o r  -l/7th power f o r  turbulent 
boundary layer  (ref. 2). A s  a r e su l t  of t h e  decrease i n  boundary-layer thick- 
ness, t he  roll-control-tab geometries become more effective.  However, t he  
e f fec t  from Reynolds number appears t o  predominate at the  higher free-stream 
Mach numbers, that is, essent ia l ly  above M = 3.0.  The ef fec t  from the  non- 
l i n e a r i t y  portion of t he  curves shown i n  figures 5 and 6 is  t o  prevent the  roll- 
effectiveness parameter from changing proportionately with e i the r  c or  6. 
This effect ,  however, i s  expected since, even from inviscid theory, the  pressure 
d is t r ibu t ion  over t he  wedge surface i s  expected t o  vary with wedge half-angle 
i n  a similar manner. 

arameter as t h e  free-stream Reynolds number w a s  
increased from 2.5 X 10 2 t o  4.0 X lo6 per foot.  This ef fec t  of Reynolds number 

Rolling-Moment Coefficient 

The rolling-moment coefficient C2 presented i n  figures 8 t o  13 represents 
the  t o t a l  rolling-moment coefficient of t h e  model due t o  four roll-control tabs, 
one tab located on the  t r a i l i n g  edge of each of four f in s .  The C2 data f o r  
rol l -control  tabs with c = 0.308 inch and 6 = 170 and w i t h  c = 1.230 inches 
and 6 = 8 O  were not obtained. However, the  Cz variat ion with h can be 
obtained f o r  these controls by cross plot t ing t h e  data presented i n  figures lO(a) 
and 10( c), respectively. 

Effect of Reynolds number and model incidence angle appear t o  be s l igh t  
C2 (within the  measured data accuracy) on 

data  presented i n  f igures  9 and 12, respectively. 
as i l l u s t r a t e d  by t h e  trends of the  

Examination of t he  rolling-moment data presented i n  figures 8 t o  1 2  does 
not indicate  the  occurrence of any severe flow separation about t h e  roll-control 
tabs.  If any existed, C2 w o u l d  display some independence with free-stream 
Mach number. 
t o  negligible e f fec ts  of flow separation on 
control tab  most l i k e l y  t o  succumb t o  flow separation w a s  t he  t ab  with 
c = 0.308 inch and 6 = 220 at  &, of 2.30 and 2.96, but t h i s  result is  not 
substantiated by these data. 

Thus, t h e  omission of such a trend i n  these data indicates small 
C2. According t o  reference 3, t h e  

Comparisons of theore t ica l  C2 values with experimental values are shown 
i n  figure 13. The coqar i sons  were made f o r  t h e  various roll-control-tab chords 
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investigated and f o r  roll-control-tab angle of 12O. 
both two dimensional and inviscid and excluded any body effects  or interference 
effects  from body on tabs. 
t i o n  theory where the pressure coefficient equation was l inearized by evaluating 

The theories used were 

One theory u t i l i zed  w a s  Busemann's small perturba- 

only the first term of the ser ies  expression, namely, &€2 = 26 . (See 

ref.  4.) 
shock results from compressible flow charts of reference 5. 
Busemann's l inearized resu l t s  appear t o  be the  be t t e r  f i t  of the  two theories 
with the experimental data. However, f o r  the  longest chord investigated, 
c = 1.230 inches, Busemann's l inearized resu l t s  underpredict the experimental 
data by as much as the  resu l t s  obtained by using reference 5 overpredict them. 

The other theoret ical  resu l t s  shown i n  these plots  represent oblique 
I n  general, 

Damping-in-Roll Parameter 

The Czp  values reduced from the data obtained from the  free-spinning 

phase and nonspinning phase of the  wind-tunnel program are  presented i n  f ig-  
ure 14 f o r  the  roll-control tabs, except f o r  omission of those data of C z  men- 

I, 
tioned previously. The trend ex is t s  t ha t  f o r  each roll-control chord, the C z  

values were highest f o r  the  largest  tab  angle and decreased with decreasing tab 
angle. The spread due t o  tab angle change i n  CzP  values f o r  a given chord 

increased as the  free-stream Mach number increased. Some of t h i s  s p r e e  appears 
t o  be associated with the accuracy of these data. 
t i o n  nAccuracy,n Czp values reduced from the  measured C z  and Pd - data were 

l e s s  accurate a t  the  higher Mach numbers. The inaccuracies estimated included 
contributions (1) from internal  bearing f r i c t i o n  on steady-state rol l ing veloc- 
i ty ,  (2)  from Cz, and ( 3 )  from the  deviations i n  the very low values of ro l l -  
effectiveness parameter which existed a t  the higher Mach numbers of these tests. 

A s  was mentioned i n  the  sec- 

2vca 

Comparisons of theoret ical  resu l t s  with experimental C z p  values are  pre- 
sented i n  f igure 15 f o r  the various roll-control-tab chords investigated and 
f o r  a tab angle of 120. 
flow and f o r  an isolated wing planform. The CZp values computed from refer- 

ence 6 were f o r  two f i n s  and were doubled f o r  one case and multiplied by a fac- 
t o r  of 1.55 f o r  a second case t o  obtain representative 
four-fin assembly arrangement. For the case where C z p  values were doubled, 
t he  assumption w a s  made tha t  f in - f in  o r  fin-body interference effects  on 

were negligible. 
effect  on mainly because the  r a t i o  of body diameter t o  f i n  span was,low 

f o r  the t e s t  model. I n  the second case, the factor  of 1.55 w a s  obtained from 
reference 7 which included theoret ical  estimates of interference e f fec ts  on 

The resul ts  developed i n  reference 7, however, were f o r  a s l igh t ly  different  
f i n  planform, namely, t ha t  f o r  a full del ta .  The resu l t s  f o r  a clipped de l ta  
planform ( f in s  tes ted herein) were not available. 

The theory u t i l i zed  ( r e f .  6)  w a s  f o r  potential, inviscid 

Czp  values f o r  the 

czP 
Estimates of body interference e f fec ts  indicated a very small 

CzP  

Czp. 

Thus, the fac tor  t o  convert 
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C l p  
between 2 and 1.55, apparently closer t o  2. The theoret ical  resu l t s  with a fac- 
t o r  of 2 agreed favorably with the measured data, i n  fact ,  these theoret ical  
resu l t s  represented a mean f o r  the experimental data  presented. The theoret ical  
resu l t s  incorporating the  fac tor  of 1.55 underpredicted the experimental data 
by approximately 20 percent. 

f o r  a two-fin arrangement t o  tha t  f o r  a four-fin arrangement may l i e  

Aerodynamic Characteristics 

Besides the  data pertaining t o  the  model rol l ing characterist ics which 
have been presented thus far, some m o d e l  aerodynamic longitudinal s t a b i l i t y  
characterist ics have also been measured. 
the  l a t e r a l  plane as well, since the  model w a s  symmetrical. The data f o r  t he  
normal-force-curve slope ma, the  s t a t i c  s t a b i l i t y  parameter C w  s t a t i c  

margin 

t o  22. The model has adequate s t a t i c  s t a b i l i t y  as indicated by the Cm, and 

These longitudinal data a lso apply t o  

xcp - 
cg, and drag coefficient C D ~ O  are presented i n  figures 16 

d 

xcp - xcg plots  shown i n  figures 17 and 18, respectively. The drag-coefficient 
d 

data at  zero model incidence angle (a = Oo) are  presented i n  figures 19 t o  21 
f o r  the  various roll-control tabs including t h e  data f o r  6 = OO. However, not 
included i n  these data are  t h e  model base-drag contributions. 
variation with M, has been measured and is  shown i n  figure 22 along with the  
total-drag-coefficient data which does include base-drag contributions. 
t o t a l  drag coefficient shown i n  f igure 22 w a s  measured without the  presence of 
any roll-control tabs.  
investigated may be obtained from figures 19 and 21. 
drag coefficient appears t o  be s m a l l  as i l l u s t r a t ed  by the  plots  of figure 20. 

The base-drag 

This 

The contribution t o  drag from the  roll-control tabs  
Reynolds number e f fec t  on 

Comparison of Computed and Measured Rolling Velocities 

A comparison of ro l l ing  veloci t ies  reduced from free-f l ight  tes t ing  of two 
ful l -scale  Cajun systems (models 1 and 2) with values obtained from pref l ight  
t ra jectory calculations i s  shown i n  f igure 23. The pref l ight  t ra jec tory  cal- 
culations used interpolated values of rolling-moment coefficient C2 and 
damping i n  roll  reduced from wind-tunnel measurements f o r  roll-control tab 

of c = 0.308 inch and 6 = 80 and used extrapolated values t o  cover the  free- 
flight Mach number range of approximately 1.50 t o  5.50 since the  wind-tunnel 
values ranged from & = 2.30 t o  I& = 4.63. Also, t he  preflight calculations 
were based on r ig id  aerodynamics. The f l i g h t  resu l t s  from model1 agreed favor- 
ably with pref l ight  computed values throughout t he  thrusting and coasting phases 
whereas the  results for f l i g h t  model 2 differed from those f o r  model 1 by 
1 cycle per second and from pref l ight  resu l t s  by 3/4 cycle per second during 
the  coasting phase. 
a t t r ibu tab le  mainly t o  an effect ive 3-minute f i n  misalinement (pref l ight  meas- 
urement) opposing the  velocity i n  roll produced by roll-control tabs.  
by using s t r i p  theory (developed f o r  steady-state conditions), t h i s  effect ive 

CzP 

The difference i n  f l i gh t  results from the  two systems is  

Moreover, 
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f i n  misalinement produced an opposing rol l ing velocity of approximately 1 cycle 
per second, the  approximate amount the  f l i g h t  resu l t s  d i f f e r .  

SUMMARY OF RESULTS 

Measured wind-tunnel resu l t s  on ll roll-control-tab configurations (plates  
with wedge-shaped cross section) f o r  mounting on the  t r a i l i n g  edge of the sta- 
b i l iz ing  f i n s  of the  Cajun stage t o  obtain roll-effectiveness data a re  presented 
herein along with the  general aerodynamic character is t ics  defining t h i s  vehicle 
f o r  the  free-stream Mach number range of 2.30 t o  4.63 a t  free-stream Reynolds 
number of 2.5 x 106 per foot .  
number of 4.0 x 106 per foot and f o r  model incidence angles other than zero. 
The t o t a l  rolling-moment-coefficien-t,data are  compared with the resu l t s  from 
two simple inviscid theories; one theory, Busemann's small perturbation theory, 
f i t s  the  experimental results, i n  general, be t t e r  than the  resul ts  from the 
oblique-shock theory. The l a t t e r  theoret ical  results,  i n  a l l  cases, overpredict 
the  experimental values. The damping-in-roll parameter reduced from wind-tunnel 
measurements i s  i n  agreement with the  theoret ical  resu l t s  when the damping-in- 
r o l l  derivatives computed for  two f i n s  were doubled f o r  four-fin assembly 
arrangement. Preflight calculations of rolling-velocity history using present 
wind-tunnel measurements agree favorably with resu l t s  from free-f l ight  tes t ing  
of the ful l -scale  Cajun vehicle. 
results,  the  roll-effectiveness parameter and some model longitudinal aerody- 
namic coefficients which a l so  apply f o r  the  l a t e r a l  plane as well have been 
presented herein. 

Some additional data  a re  presented f o r  Reynolds 

Besides reporting on the  aforementioned 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 9, 1964. 
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APPENDIX 

INTERNAL BALLBEARING FRICTION EVALUATION 

The contribution of in te rna l  f r i c t i o n  from t h e  b a l l  bearings used i n  
phase 1 of the  free-spinning model w a s  evaluated i n  the  laboratory by simu- 
l a t i ng  the  axial and rad ia l  loads experienced by t h e  bearings during wind-tunnel 
operation. For t h i s  laboratory setup t h e  model w a s  s tr ipped of t he  s tab i l iz ing  
f in s  t o  minimize the  contribution i n  t h i s  evaluation of aerodynamic damping and 
t h e  model w a s  then inclined at 34O10' t o  the  horizontal  i n  order t o  take advan- 
tage of t he  w e i g h t  of the  model t o  duplicate f o r  t he  greatest  wind-tunnel f ree-  
stream dynamic pressure & t he  axial and rad ia l  loads induced on these 
bearings. N e x t ,  the  model w a s  given an i n i t i a l  
spin impulse and the  time rate of decay of the  ro l l ing 've loc i ty  w a s  recorded. 
me resul t ing his tory i s  shown i n  f igure 25. 

(See f ig .  24 f o r  model setup.) 

The roll mass moment of i n e r t i a  Ix w a s  calculated f o r  t h i s  system t o  be 
0.0058 slug-ft2; different ia t ion of t h e  curve of figure 25 y ie lds  
resul t ing torque T associated with 6 and Ix w a s  calculated from the  
expression 

5; and the  

T = Ix$ 

The resulting torque T represents t h e  torque of the  system which can be 
reduced t o  two components, namely, t he  bearing torque % and t h e  external 
viscous-layer skin f r i c t i o n a l  torque Tsf; thus, T can be expressed as 

T % + Tsf 

By using references 2 and 8, t h e  skin f r i c t iona l  torque w a s  evaluated and plot ted 
as a function of revolutions per minute as shown i n  f igure 26. Thus, t he  bearing 
torque Tb w a s  evaluated from t h e  torque equation, namely, 

= T - Tsf 

I n  order t o  i l l u s t r a t e  haw t h i s  bearing torque lj, af fec ts  the  steady-state 
ro l l ing  velocity, t h e  sequence of equations which follows w a s  employed. For 
steady-state conditions, t h e  ro l l ing  moment gives 

o r  
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where 

Maf 

%d 

%f 

Rearranging equation (2a) gives 

moments due t o  aerodynamic forcing function 

moments due t o  aerodynamic damping 

moments due t o  bearing f r i c t i o n  

Expressing t h e  aerodynamic damping moment i n  derivative form and aero- 
dynamic forcing moment i n  coefficient form on the  left-hand side of equa- 
t i o n  (a) gives 

Pd - LSd -% 2 v m  Mbf 

and solving f o r  steady-state rolling velocity from equation (2c) gives the  
expression desired, namely, 

Note tha t  i n  t h e  absence of bearing torque (Tt, 
cz . Equation (3) reduces t o  the  common form f o r  r o l l  effectiveness - = - - 

i l l u s t r a t e s  t h a t  as the  bearing torque increases, t he  correction t o  p 

increases by t h e  r a t i o  of Mbf 

%f = 0), equation ( 3 )  
Pd 

2vco czP 

M a f '  

The amount of correction t o  p measured during wind-tunnel operation i s  
demonstrated by t h e  following example f o r  one condition: 
From f igure 25, 
Ix = 0.0058 slug-ft2 

Figure 26 gives 

namely, p 2 2000 rpm. 
$ = -17.6 rpm/sec and from equation ( la)  f o r  

T = Ix$ = -0.01068 f t - lb .  

Tsf = 0.00078 f t - lb;  therefore, the  bearing torque & 
i s  equal t o  T - Tsf o r  -0.0099 f t - l b .  

For t h e  following wind-tunnel conditions the  correction f o r  p may be 
evaluated: 

M, = 2.30 

= 567 lb/sq f t  

12 



I 

where 

and 

Maf = 4.771 f t - l b  

!k = -0.0021 
Maf 

s = .0.0388 sq f t  

d = 0.222 f t  

c = 1.230 

6 = 120 

cz = 0.975 

Thus, t he  correction t o  p amounts t o  only 0.21 of a percent and i s  con- 
sidered t o  be negligible; thus, any correction from bearing f r i c t i o n  a t  
M, = 2.30 w a s  ignored as s ta ted  i n  t h e  accuracy section of t h i s  report. 
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(a) Mcdel mounted w i t h  b a l l  bearings on wind-tunnel s t ing.  

( b )  Model mounted with strain-gage balance on wind-tunnel s t ing .  

Figure 1.- Photographs of m o d e l  arrangements used i n  wind-tunnel investigation. 
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R 0 1 1 -  control tob data 

Item c, inches h, inches 6 ,deg 

2 ,308 .I24 22 
3 .308 ,094 17 
4 ,308 ,065 12 
5 .308 ,038 7 

; 6  ,615 ,176 16 

8 ,615 ,087 8 
I 9 .615 .043 4 

II  1.230 .I73 8 
I7 I. 230 ,086 4 

1 I 0 0 0 

1 
I 

3.69 

1 7  ,615 .I31 12 

Y 

, 10 1.230 .262 12 
8.61 2 

i -__--_I  

I 
___- - -  

Fin detail - A  

( a )  Detail  of model and roll-control tabs. 

Figure 2.- Detail  dimensions of model including t ab le  of roll-control data and arrangement of in te rna l  components. 
( A l l  dimensions a re  i n  inches unless otherwise noted.) 

detail - A 



rd mounted ball bearing 

Set screw--/ LLock nut 

Retaining ring 

(b)  Detail of model mounted on ball-bearing spindle and s t ing support. 

S I X  -component stroirrgage balance 

L L ~ c k i n g  nut 

( c )  Detail of model mounted on six-component strain-gage balance and s t ing support. 

Figure 2.- Concluded. 



rad  

0 I 2 3 4 5 
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Figure 3.- Variation with free-stream Mach number of roll-effectiveness parameter for 
2vca 

all roll-control tabs investigated. 
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(a) c = 0.615; 6 = 12'. 

pd-, I 
2 vm 

2 

'ad 

0 I 2 3 4 5 
M m  

(b) c = 0.615; 6 = 4O. 

Figure 4.- Wfec t  of Reynolds number on roU-effectiveness parameter 'd for rol l -control  
2v, 

tabs  with c = 0.615; 6 = bo and 12'. 



Figure 5.- Variation of roll-effectiveness parameter with roll-control-tab wedge 
aC.3 

angle 6 for free-stream Mach numbers investigated. 
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Figure 6. - Variation of roll-effectiveness parameter pd with roll-control wedge chord 
2v, 

for 6 fixed at l2O for free-stream Mach numbers. 
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22 

-6 -4 -2  0 2 4 6 
(2, deg 

(a) c = 1.23; 6 = 4'. 

-6 -4 - 2  0 2 4 
a. deg 

6 

( b )  c = 0.615; 6 = 8'. 

Figure 7.- Typical var ia t ion of roll-effectiveness parameter E 
angle a for ro l l -contml  tabs of c = 1.23, 6 = 4' and c 

with model incidence 

= 0.615, 6 = 8'. 



(a) c = 0.308. 

Figure 8 .- Variation of rolling-moment coefficient with free-stream Mach number for rol l -  
control tabs. 
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(b) c = 0.615. 

Figure 8.- Continued. 
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M m  

( c )  c = 1.230. 

Figure 8.- Concluded. 
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I 2 

(a) c = 0.615; 6 = 4'. 

4 5 

I 2 4 5 

(b) c = 0.615; 6 = 12'. 

Figure 9.- Wfect of free-stream Reynolds number on rolling-moment coefficient for control 
tab of c = 0.615 and 6 = 4' and 120. 
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0 4 8 12 16 20 24 

(a) e = 0.3Og. 

Figure 10.- Variation of rolling-moment coeff ic ient  w i t h  roll-control-tab wedge angle 6. 
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(b) c = 0.615. 

Figure 10.- Continued. 
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ct 

(.) = 1.230. 

Figure 10.- Concluded. 



c,  in.  

Figure 11.- Variation of rolling-moment coefficient with roll-control-tab wedge chord 
f o r  6 = 120. 
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Figure 12.- Typical variation of rolling-moment coefficient with model incidence angle for 
roll-control tab c = 0.308, 6 = 22O. 
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(a) c = 0.308; 6 = 12'. 
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(b) c = 0.615; 6 = 12O. 

Figure 13.- Comparison of theory with experimental rolling-moment coeff ic ients  f o r  6 of 1 2 O  
and various roll-control-tab chords. 
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( c )  c = 1.230; 6 = 12O. 

Figure 13.- Concluded. 
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( a )  c = 0.308. 
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( c )  c = 1.230. 

Figure 14.- Variation of damping-in-roll parameter with free-stream Mach number for various 
rol l -control  tabs .  
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Figure 15.- Comparison of theory with experimental data.  
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Figure 16.- Variation of model normal-force-curve slope with free-stream Mach number for all 
roll-control tabs.  I represents spread i n  experimental data. 
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Figure 17.- Variation of model s t a t i c  s t a b i l i t y  parameter with free-stream Mach number for 
all roll-control tabs.  
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Figure 18.- Variation of model s t a t i c  margin parameter with free-stream Mach number f o r  all 
roll-control tabs.  
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(a) c = 0.308. 
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(b) c = 0.615. 

0 2 3 4 5 
MaJ 

(c) c = 1.230. 

Figure 19.- Variation of model drag coefficient (excluding base drag) with free-stream Mach 
number. 
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Figure 20.- Effect of free-stream Reynolds number on model drag coefficient f o r  ro l l -  
control tabs  of c = 0.615 and 6 = k0 and 120. 
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Figure 21.- Effect of roll-control-tab chord c on model drag coefficient f o r  6 = 12O. 
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Figure 22.- Variation of model t o t a l  drag coefficient and base drag coefficient with free-  
stream Mach number f o r  6 = Oo. 
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Figure 23.- Comparison of ro l l ing  velocity reduced from f r e e  t e s t i n g  Cajun stages with 
values obtained from pref l ight  t r a j ec to ry  calculations using wind-tunnel data. 
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\ H- Photo diode 

Variable resistor 

,Output rolling velocity vs t ime 

Switch k P- 6 V  Battery 

Figure 24.- Laboratory model setup and electronic equipment used t o  evaluate f r ic t ion  from 
b a l l  bearings. 
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Figure 25.- Rolling-velocity-time his tory f o r  model of Cajun stage without f ins .  
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Figure 26.- Variation of aerodynamic skin-friction torque with rol l ing velocity f o r  model 
of Calm without f ins .  
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